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Abstract 

Polyacenic semiconductor (PAS) is obtained by pymlyzing phenol-formaldehyde resin (PFR). The properties of PFR heat-treated at 
different temperatures are investigated. The lithium intercalation capacity of PAS as a function of heat-treatment temperature (WIT) exhibits 
a maximum at around 700 °C. A knee appears at 700 °C, not only in the plot of atomic ratio [H]/[C] versus HTr, but also in the plot of 
conductivity versus HTI'. For PAS with a HIT of 700 °C, the maximum in the ratio of the relative intensity of Raman spectra at 1360 cm- t 
corresponds to nanometer graphite, and that at 1580 cm- t to graphite. A reasonable explanation of these phenomena is the transformation of 
nanometer graphite to graphite. 
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1. Introduction 

In spite of  the high energy density of rechargeabl~ lithium 
batteries, commercialization is impeded by the dendritic 
growth of metallic lithium during the cycling process. The 
latter results in cycle-life and serious safety problems. Mate- 
rials that enable lithium-ion intercalation at low potentials 
overcome this problem and can be used with benefit as anodes 
in 'lithium-ion' batteries [ 1 ]. Some carbonaceous materials 
have been reported [2-4] to be extremely suitable for this 
purpose. In recent years, carbon-based materials have been 
extensively studied [5,6] as the anodes for lithium-ion 
batteries. 

It has been demonstrated that polyacenic material can be 
electrochemically doped with lithium to form n-type semi- 
conductor in a reversible manner, and that it can store and 
deliver electrical energy [7-9].  This paper reports a study 
of polyacenic semiconductor (PAS), a pyrolyzed phenol- 
formaldehyde resin (PFR). 

2. Experimental  

PAS was prepared by pyrolyzing phenol-formaldehyde 
resin at various temperatures, with a rate of temperature rise 
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of 10 °C h -  ', under a nitrogen atmosphere [ 10]. The products 
were black porous material. The lithium intercalation capac- 
ity of PAS was determined by measuring the discharge capac- 
ity of  an Li /PAS cell with a discharge cunent density of  0.4 
i l ia  cm -2. The PAS electrodes were made by mixing the 
PAS powder with 5 wt.% Teflon powder and then pressing 
under a pressure of 10 MPa into a disk of  diameter 10 mm 
and thickness 0.13 mm. The conductivity of  PAS was meas- 
ured with a 4192A LF impedance analyser. The contents of  
elemental hydrogen and carbon in the PAS sample were 
determined by atomic absorption spectroscopy. 

The reported IR spectra were recorded with AlphaCentaurt 
Fr-IR-type IR spectrometer. 

Back-scattering Raman spectra were recorded with a Spex- 
1403 spectrometer. The radiation line was 488.0 rim. The 
power fiom the argon laser was 400 mW with a radiation spot 
of 0.2 mm diameter on the sample. The data were sampled 
and analysed with a Datamate system. 

3. Results and discussion 

The IR spectra of PFT. and PFR beat-treated at different 
temperatures are shown in Fig. 1. For PFR beat-treated at 500 
°C, the intensity of the stretching band of  the - O H  group of  
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Fig. I. IR spectra of PFR pyrolyzed at various temperatures. 

PFR at 3380 and 1470 c m - t  is greatly decreased, or even 
disappears. The 1224 c m -  i band of the = C-O on the aro- 
matic ring behaves similarly. Except for the band groups in 
the ranges 1053 to ! 125 c m -  ~ and 743 to 878 c m -  t, which 
are assigned to 13-c. of the aromatic ring and the v..c. n-ca 
substituted benzene, respectively, and the v .ca  vibration 

bands at 1628 c m -  ~ and 737 to 864 c m -  t all other bands 
disappear. For the sample treated at 700 °C, except for the 
v..c. band of the aromatic ring at 1628 c m -  t, all other bands 
disappear completely. All these results indicate clearly that 
during the pyrolysis process, PFR first undergoes intermo- 
lecular dehydration and, with increase in temperature, intra- 
molecular dehydrogenation occurs. The latters leads to 
further carbonizing. Finally, only the polymerized aromatic 
tings are preserved. 

The lithium intercalation capacity of PAS as a function of 
heat-treatment temperature (HTr )  is shown in Fig. 2. The 
capacity increases with pyrolysis temperature and reaches a 
maximum value of 438 mAh g - ~ at about 700 °C. Thereafter, 
the capacity decreases. 

The elemental ratio of [ H ] / [ C ]  versus HT'I" is given in 
Fig. 3. At first, the ratio rapidly decreases. Above 700 °C, 
however, the ratio declines less dramatically. 

The conductivity of PAS samples increases quickly with 
rise in the HTI'  up to 700 °C, then it changes smoothly, and 
then rapidly increases. Finally, the conductivity increases 
only slightly with temperature, see Fig. 4. 
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Fig. 2. Lithium intercalation capacity of PAS as a function of heat-treatment 
temperature. 
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Fig. 3. Elemental ratio of [H]/[C] vs. heat-treatment temperature. 
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Fig. 4. Conductivity of PAS samples as a function of heat-treatment 
temperature. 
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Fig. 5. Raman spectra of PAS heat treated at various temperatures. Open 
circles are experimental data, solid lines are fitting results, and dashed line 
is the three-fitting Raman line for each Raman spectra. (a) 400 °C; (b) 500 
°C; (c) 550 °C: (d) 600 °C; (e) 650 °C; (f) 700 °C; (g) 750 °C; (h) 900 
°C; (i) IlO0°C, and (j) 1500 °C. 

D-mode and P-mode behaviour are called phase G, phase D 
and phase P, respectively. 

Phase D can be considered as the clusters of two or three 
hexagonal carbon atom rings packed in parallel. The typical 
size of the clusters is several nanometers. Therefore, phase D 
is a nanometer graphite. By combining more hexagonal car- 
bon layers, the nanometer graphite can become a larger graph- 
ite crystallite, phase G. Under thermal treatment, the aromatic 
molecules become hexagonal carbon atom rings, while phase 
P is the precursor of phase D. The plot of relative intensity 
ID/I o as a function of H T r  is shown in Fig. 6. It can be seen 
that a maximum appears when the sample is he~-treated at 
700 °C. 

The above results indicate that 700 °C is a critical HTr. 
What happens, therefore, at 700 ° C? The answer must lie in 
the structure and phase change in the PAS samples during the 
heat-treatment processes. From the Raman spectra ofa  PAS 
sample heat-treated at 400 °C (the lowest temperature used 
this study), it can be seen that both the graphite and the 
nanometer graphite are already present. Of course, the host 
phase (phenol-formaldehyde), and its evolutionary phases 
(aromatic molecules) also exist. Therefore, all the PAS sam- 
ples heat-treated at various temperatures are mixed phases of 
graphite, nanometer graphite and aromatic molecules. The 
differences between the samples heat-treated at the various 
temperatures are determined by the relative content of these 
phases and their microstracture. 

In the temperature range 400 to 700 °C, the pyrolysis reac- 
tion of phenol-formaldehyde progresses quickly with rise in 
temperature. Normally, during this process, the intermole- 
cular dehydration and intramolecular dehydrogenation occur 
rapidly. Concomitantly, some aromatic molecules combine 
to form nanometer graphite. When the temperature reaches 
700 °C, the amount of nanometer graphite becomes maximum 
and the speed of conversion from nanometer graphite to 
graphite increases. As a result, the ratio ID/Io of the Raman 
spectra has a maximum when the temperature is 700 °C. 

All the PAS samples described in this work have three 
characteristic modes in the Raman spectra, see Fig. 5. One is 
around 1580 cm-  ' and corresponds to graphite; it is called 
the G-mode. The second is located around 1360 cm-  ' and is 
related to nanometer graphite; it is called the D-mode. The 

range from 1300 to 1600 cm-  and may third covers a large i 
be attributed to the aromatic molecules; it is called the P- 
mode. According to Tuinstra and Koenic [ I 1 ], the G-mode 
is associated with the 'in plane' atomic displacements in the 
central parts of large graphite crystallites, while the D-mode 
is caused by tiny crystallites or the boundaries of the larger 
crystallites. The ['-mode may be related to the aromatic mol- 
ecules that remain in the heat-treated samples. For discussion 
purposes, the portions in the samples that exhibit G-mode, 
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Fig. 6. Plot of relative intensity, IDIIc, as a function of heaz-trealment 
temperature. 
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For the same reason, turning points appear in the curves of 
[ H ] / [ C ]  and conductivity as a function of temperature, 
see Figs. 3 and 4. 

Why does the PAS beat-treated at 700 °C have the highest 
lithium-intercalation capacity? The main phese is n anometer 
graphite accompanied by some graphite phase and a few 
aromatic molecules. Both nanometer graphite and graphite 
can accept lithium ions. Nanometer graphite consists of tiny 
graphite crystallites constructed with a few graphite rings. 
Besides the normal position for lithium ions in the first-stage 
intercalation graphite compound, there are large amounts of 
surface carbon atoms, that could become the position for 
lithium ions. Therefore, the lithium intercalation capacity for 
PAS heat-treated at 700°C can be as high as 438 mAh g -  1. 
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